PRODUCT DATA SHEET H₂ v_{3.01}

FILTER ELEMENT – H²

Series: AF Series

(Catalyst (Hopcalite) + Particulate)

DESCRIPTION

New H² two stage filter elements have been specifically developed for high efficient reduction of carbon monoxide as well as some other substances (2) from compressed breathing air (1). In first stage Hopcalite catalyst reduces specified substances from the air and in second stage depth fiber filter media intercepts all Hopcalite dust particles. It is essential that coalescing filter element is installed as pre-filter to the H² grade filter and that relative humidity is sufficiently low.

(1) For any other technical gas please contact us or your local dealer

FILTER ELEMENT RATING ACCORDING TO ISO 8573-1

Solid particles class	Water class	Oil class
1*	/	/
		Validated according to ISO12500-3
		* Valid if "S" filter cartridge is installed upstream

TECHNICAL SPECIFICATION

Operating temperature	1,5 - 45 °C / 35 - 113 °F
Operating pressure	0 - 16 barg / 0 - 232 psi
Differential pressure (dry)	/
Differential pressure (wet)	/
Particle retention (nominal)	99,9999% (0,1 μm)
Particle retention rate ISO ⁽³⁾	99,98%
Residual oil content ⁽⁴⁾	/
Flow Direction	INSIDE to OUTSIDE
Capacity (ISO12500-2) ⁽⁵⁾	/
Inlet humidity	-40°C (pressure dew point)

⁽³⁾ Tested according to ISO12500-3, 1bar(a), nominal flow, 06050 M, Most penetrating particle size MPPS 0,3mm

MATERIALS

Filter media	Borosilicate micro fibers
Protection media	Polyester fleece
Drainage media	Polyester based polyurethane
Adsorption media	Activated carbon granulate
Support (inner-outer)	Stainless steel 1.4301
Bonding	Polyurethane
Endcaps	PA6 with 30% glass fibers
Sealing	NBR
Chamber	Acryl
Catalyst material	Hopcalite

PRODUCT DATA SHEET H2 v3.01

SIZES

N	/lodel	Diameter	Height	Flow Capacity	Flow Capacity	Fits into filter	Hopcalite
		[mm]	[mm]	[Nm³/h]	[scfm]	housing	[g]
07	050 H ²	51	70	78	46	AF 0076	35
14	050 H ²	51	140	120	70	AF 0106	135
12	075 H ²	75	125	198	116	AF 0186	155
22	075 H ²	75	225	335	197	AF 0306	430
32	075 H ²	75	325	510	300	AF 0476	740
50	075 H ²	75	505	780	459	AF 0706	1410

DIFFERENTIAL PRESSURE [mbar] AT % OF NOMINAL FLOW

Model	25%	50%	75%	100%
07050 H ²	20	40	60	80
14050 H ²	28	55	83	110
12075 H ²	30	60	90	120
22075 H ²	105	210	315	420*
32075 H ²	183	365*	548*	730*
50075 H ²	343	685*	1028*	1400*

To reach required pressure drop reduce the flow.

IMPORTANT

- Differential pressure should never exceed 1500mbar, otherwise filter element can be damaged.
- If filter housing is equipped with differential pressure gauge check maximum allowable differential pressure of the gauge.
- If tie-rod is used to fix the element into filter housing max differential pressure must not exceed 350mbar.

CORRECTION FACTORS

To calculate the correct capacity of a given filter based on actual operating conditions, multiply the nominal flow capacity by the appropriate correction factor(s). CORRECTED CAPACITY = NOMINAL FLOW CAPACITY x C_{OP}

OPERATING PRESSURE

[bar]	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
[psi]	29	44	58	72	87	100	115	130	145	160	174	189	203	218	232
C_OP	0,38	0,5	0,63	0,75	0,88	1	1,13	1,25	1,38	1,50	1,63	1,75	1,88	2,00	2,13

MAINTENANCE

Replace filter element at least every 3 months or sooner if it is required for specific application.

INFORMATION IN THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE

Our quality management system is certified by BUREAU VERITAS in conformity with ISO 9001:2015

Omega Air d.o.o. Ljubljana Cesta Dolomitskega odreda 10 1000 Ljubljana, Slovenia

Tel: +386 (01) 200 68 00 Fax: +386 (01) 200 68 50

e-mail: info@omega-air.si www.omega-air.si

^{*}It is strongly recommended to reduce the flow so that pressure drop is below 350mbar